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Shaping is a way in which a human designer can provide assistance to a learning
system to enable it to solve problems that would otherwise defeat it. The exper-
iments reported here explore a variety of shaping techniques used in conjunction
with a genetic programming based system, in order to develop controllers for visual
tracking tasks. Controllers are evolved in simulation using shaping, and are then
transferred successfully to a real robot head.

1 Introduction

1.1 From Robot Learning. . .

For many years now, automatic design approaches based on techniques from
Genetic Algorithms, Reinforcement Learning and Neural Networks, have been
touted as the way in which the engineers of the future will produce robot
control systems. Just specify at a high level what you want the robot to do,
and then sit back and wait while the GA/RL/NN works out how to get the
robot to do it. While this is undoubtedly a very attractive goal, a quick look
at the current state of the art of automated robot design reveals that in most
cases we are a long way from being able to automatically design controllers
that can out-perform human-designed ones. While robot controllers have been
learned from scratch for very simple ‘insect-like’ behaviours, general-purpose
tabula rasa learning of complex tasks seems difficult or impossible.

1.2 . . .To Robot Shaping

One particularly promising solution to this problem is to bring the human back
into the design cycle: rather than attempt to learn a complex task in one go,
learn it in an incremental, hierarchical fashion, with the human providing a
task-specific framework, and the learning system ‘filling in the blanks’. While
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learning the whole task may be beyond the capabilities of the learning system,
learning small parts of it and then learning how to put these parts together
may not be. There are many examples of work using this idea for robot
controller development.1,2,3 The approach has been called ‘robot shaping’,4

based on the usage of the word in the psychology of animal training.5

As we shall see, a great variety of shaping techniques can be applied to
robot learning, and they can be combined with a great variety of different
learning architectures. What shaping methods should we use? And what
learning architectures should we use with them? The remainder of this chapter
examines a number of choices and applies them to the difficult problem of
learning a visual tracking behaviour for a robot head.

2 Task Domain

2.1 Visual Tracking

If we are going to demonstrate the usefulness of shaping, then we need a
reasonably complex task domain. Tasks involving vision are notoriously hard
for learning systems due to the vast quantity of data that video cameras
produce each second, coupled with the relatively high difficulty in interpreting
visual pixel data, compared with, for instance, sonar echoes. As a result they
make a good testbed for shaping techniques.

Tracking moving objects using vision is a basic skill in most visually
equipped animals and has been widely studied in the robotic vision com-
munity. A robotic ‘camera head’ that can fixate on moving objects is a com-
monplace sight in robotics labs around the world, but virtually all of these
have been carefully programmed by hand. Our experiments are directed at
getting a robot to learn a controller that can reliably perform this task, with
little or no pre-processing of the visual data.

As a milestone on the way to the goal of tracking arbitrary moving objects,
we have performed experiments on the easier task of ‘light-tracking’, in which
the moving target to be tracked is distinguished by being significantly brighter
than its surroundings.

Our robotic platform consists of an RWI B21 mobile robot equipped with
a single colour video camera mounted on a Directed Perception pan/tilt unit
(PTU). For light-tracking, the behaviour we require is that the robot should
keep the brightest object in front of it centred in its visual field. For the
harder problem of motion-tracking, we require that the arbitrarily coloured
moving object in the scene be kept centered in the image.
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2.2 A Minimal Visual Simulator

Learning algorithms typically take a long time to run. This problem is often
magnified for robots since the speed at which controllers can be evaluated
is limited by the time it takes the robot to physically move. Therefore in
common with many other researchers,6,7 we have decided to train the con-
troller in simulation initially and then attempt to transfer it directly to the
real robot. Using simulations has an additional advantage: it allows us to use
more ‘informed’ evaluation functions that can make learning much faster.

Simulations are often criticized on the grounds that it is very unlikely that
a controller evolved to work in a simulator will ever work anywhere else due
to the impossibility of accurately modeling the real world. However, several
researchers7,8 have shown that with a little care, it is possible to perform this
simulation to reality transfer.

At first thought, it might seem that the ‘best’ simulator possible is the
one that most closely models the real world. Perversely however, it turns out
that in fact you can do better by making the simulation worse. Jakobi7 calls
this the ‘radical envelope of noise hypothesis’ and it has three main tenets:
(1) For features of the real world that are relevant to the behaviour, model
them as closely as possible and then add a bit of noise to account for the
modeling inaccuracy; (2) For features in the real world that are not relevant
to the behaviour, model them poorly and add lots of noise to prevent the
learning system using those features; (3) Don’t bother to model eventualities
which are not part of the target behaviour since they won’t be encountered
when that behaviour has been learned correctly.

One problem with this approach is that it requires the designer to decide
in advance which parts of the environment to model accurately, and which
to leave out, and it is often difficult to do this without having at least some
idea how the robot is going to solve the problem being set. So this strat-
egy does put some additional demands on the designer, but the hope is still
that for complicated tasks, the advantages in using simulations outweigh the
additional design complexity.

Following from this, our simulator doesn’t attempt to model a realistic
scene — instead, the image produced by the simulator consists of a randomly
textured background, containing a fairly crudely modeled ‘diamond-shaped’
target. For the light-tracking task, the target is significantly brighter than the
background. For the motion-tracking task, the target is randomly coloured in
the same fashion as the background. An important feature of the simulator
derives from the observation that real backgrounds are not uniformly random,
but contain both small and large scale variations. To attempt to model this,
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the texture of the random background is modulated by a coarse scale ‘mosaic’
scene. Figure 1 shows a robot’s-eye view illustrating these features for both
tasks.

b)

a)

Figure 1. (a) Typical simulator image for the light-tracking task. (b) Typical simulator
image sequence for the motion-tracking task. The top row of images shows a sequence of
three frames produced by the simulator with the camera stationary. The moving target is
very difficult to spot in these images, but can be seen more clearly in the bottom row of
images, which shows the absolute difference between images 1 and 2, and between images
2 and 3.

Note that it is not necessary to model the background scene in a realistic
way. However, it is necessary to model the way in which the target moves
fairly accurately. This was achieved by basing the imaging model on empirical
measurements of known scenes taken using the real robot head. Building a
simulator using empirical data has previously been suggested by Miglino.8

On the actuator side, the stepper motors on the robot head actually allow
almost error-free positioning, but the velocity signals sent to the simulator
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by the controller are corrupted by adding multiplicative Gaussian noise with
µ = 1.0, σ = 0.02 to mask image modelling inaccuracies.

3 The Elements of Shaping

3.1 Learning Algorithms

There are a number of learning systems which could be used in shaping frame-
work, but we have decided to opt for a genetic algorithm.9 There are several
reasons for this.

Firstly, complex robotic tasks often fall into a ‘reinforcement learning’
framework, where the only feedback available is some measure (typically
scalar) of how well the robot is doing, rather than a ‘supervised learning’
framework, where the trainer knows exactly what the robot should be do-
ing in a number of example cases. This largely precludes techniques such as
classic neural network gradient descent.a

Secondly, we decided from the start that we wanted to deal with continu-
ous state and action spaces. This makes using classic ‘reinforcement learning’
techniques involving value functions, such as Q-learning,11 problematic, al-
though there are adaptations of the basic methods that can work in such
continuous spaces.12,13

Genetic algorithms however are well suited to working in continuous
spaces and with scalar evaluation. A crucial issue that must be decided is
how to represent candidate robot controllers so that they can be manipulated
effectively by the GA. Our system is based up ‘genetic programming’14 (GP)
and is called Tag.15

The Tag Architecture

Tag extends basic GP in a number of ways. The basics of GA/GP are not
covered here. Consult a suitable reference16,17 for details.

In contrast to standard GP, the structures evolved by Tag are general
acyclic graphs rather than trees. Evolving graphs rather than trees allows
controllers that use values computed by sub-graphs more than once to be
be expressed in a more compact and evolvable way than is possible with
simple trees. Several other authors have suggested adding graphs into GP
for similar reasons.18,19 Tag graphs are initially created by constructing a
‘bag’ of randomly chosen GP-style function and terminal nodes. The number

aAlthough see Complementary Reinforcement Back Prop10 for something similar to gradi-
ent descent using reinforcement signals and binary neural networks.
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of nodes in the bag is chosen randomly within a certain range: 10–20 nodes
per bag in these experiments. Tag graphs can have more than one output
value (for instance one output per actuator), and for each required output,
a node is selected from the bag at random to return that value. If the node
is not a terminal node, then it requires input values on which to perform its
calculation, so other nodes are selected from the bag and connected to the
first node as needed. The process continues in recursive fashion until there
are no nodes in the graph that need input connections. Loops are prevented
by insisting that no node may connect to a node that is its ancestor (i.e. its
parent, or an ancestor of its parent), and in order to ensure that the process
terminates it is necessary that the bag contains at least one terminal node to
start with. At the end of the connection process, not all nodes are necessarily
in use — these unused nodes act as spare genetic material or ‘introns’ that
may be used later. Figure 2 shows a typical Tag graph.
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Figure 2. A typical small graph evolved using Tag.

Traditional GP uses sub-tree crossover as its primary genetic operator.
Tag also uses crossover, but the operator must be modified for use with
graphs. For the most part, ‘sub-graph crossover’ is very similar to sub-tree
crossover. Starting with two parents, two offspring graphs are created by
copying. Then, a node is selected in each offspring to act as an exchange
node. To perform crossover, the exchange nodes are simply swapped between
the two graphs, together with all the descendent nodes of the exchange node
(a node is a descendent of another node if it is a child of that node or a
descendent of a child).

The tricky part of sub-graph crossover is deciding what to do about con-
nections that previously connected into the exchanged sub-graphs (other than
connections to the exchange node themselves). One obvious answer is just to
randomly reassign such connections, but Tag tries to take a more intelligent
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approach that attempts to preserve structure where possible. In brief, every
node is associated with a fixed ‘tag’ value that is uniquely assigned when that
node is first created. When a node is copied, the copy is given the same tag
value. If a particular sub-graph turns out to be a useful component, then
copies of it will tend to multiply in the population. Each of those copies will
have similar sets of nodes and associated tags. When Tag is reassigning a
connection into an exchanged region of nodes, it first checks to see if there are
any nodes present in the newly formed individual that have the same tag as
the node that the connection was previously connected to. If there is, then a
connection is made to that node. If not, then the connection is reassigned ran-
domly. The key idea is that it is less destructive if connections are reassigned
to structures that are similar to the ones they were previously connected to.
Figure 3 illustrates the general idea.
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Figure 3. An example of crossover in action. Only one offspring node is shown for clarity.
The numeric labels next to each function node show the associated tag values. During
crossover, the subgraph rooted at the node with tag 0.23 in left parent is deleted, and
replaced by the subgraph rooted at the node with tag 0.38 in the right parent. In the
child, the target value of the out B output node, which originally pointed to the root node
of the deleted subgraph, as been changed so as to target the root node of the inserted
subgraph. Notice also that connection from the plus sign, which pointed at a deleted node,
has automatically reassigned itself to a subgraph rooted at a node with an identical tag
value to the deleted node. As a result, the subgraph that calculates the values of out A has
changed only very slightly (the constant 0.62 has changed to 0.43). The new subgraph that
the connection points to is probably a mutated version of the original subgraph.

Offspring can also be produced by mutation. In this case, a single child
is initially generated by copying a single parent. Then, R nodes are selected
at random for mutation, where R is Poisson-distributed with expected value
2.b Some types of node have internal parameters that are ‘micro-mutatable’,

bIf R = 0, then R is re-generated.
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and if such a node is selected, then 90% of the time, one of its parameters is
mutated slightly. In all other cases the node has one of its input connections
reassigned randomly (if applicable), or is itself replaced with a random node.
Tag has a number of other interesting features, principally the use of a

‘rational allocation of trials’ (RAT) mechanism20 for reducing fitness evalu-
ation time, but space precludes a fuller description here. See Perkins15 for
details.

Apart from the aforementioned exceptions, Tag is a relatively conven-
tional evolutionary algorithm. It is a ‘steady-state’ algorithm in that as soon
as offspring are generated they are put back into the evolving population —
there is no concept of a generation. Tag maintains a population of size N .
Parents are selected using tournament selection: at each evolutionary step,M
individuals are chosen from the population at random and their fitnesses are
compared. The fittest individual in the tournament is chosen as one parent,
and one of the remaining individuals is chosen randomly as the other parent.
50% of the time the two parents are bred using crossover. Only one of the two
potential children is actually generated. The other 50% of the time, mutation
is used to derive a single offspring from the fitter of the two parents. In either
case the offspring replaces the less fit of its parents. This evolutionary cycle is
repeated a total of T times during a single run. In the experiments reported
here, N = 100, M = 4 and usually, T = 25000.

3.2 Shaping Methods

There are many ways in which a human expert with knowledge about a par-
ticular task can assist a robot learning system. Here we concentrate on just
two:

Controller decomposition Controllers for complex tasks can often be bro-
ken down into a hierarchy of smaller modules, in a manner analogous
to the way in which human programmers structure a program into func-
tions and objects. It is often much easier to train these individual mod-
ules separately or sequentially, than to train the whole controller at once.
In robotics, controllers are often decomposed in a behaviour-based way,
with some modules performing simple sub-tasks, and others coordinating
the activation of those modules. Mahadevan et al.21 used this approach,
training a robot to push boxes by hand-designing the coordination mod-
ules, but learning the primitive sub-tasks. Dorigo2 went one step further
and trained both the primitive sub-tasks and the coordination behaviours.

Progressive problem difficulty One important problem faced by learning
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robots is the difficulty of ‘getting off the ground’. At the start of the
learning process the robot will probably behave in a relatively random
fashion, and in some training scenarios this might mean that the robot
gets very little useful feedback on how to behave correctly. In a delayed
reward scenario, for instance, the robot might never reach the rewarded
goal by chance and hence learning will never happen. This problem can
sometimes be alleviated by initially training the robot on easier versions
of the full task. Asada22 calls this ‘learning from easy missions’, and they
show that the process can significantly accelerate learning.

A fuller taxonomy of shaping methods can be found in Perkins.15,23 For
more discussion of robot shaping in general see Dorigo and Colombetti.4

3.3 Incremental Learning

The shaping approach implies an incremental acquisition of behaviour with
new learned skills building upon previously acquiring skills. The human
trainer must design an incremental path of increasing competence that the
robot is to follow. Each ‘stage’ along this path or ‘shaping regime’, results
in the acquisition of another unit of competence in some area related to the
overall task. At each shaping stage, the task facing the robot is likely to
be slightly different, and the schedule for receiving rewards will in general be
changed as well. The final stage of a shaping regime usually requires the robot
to perform the full task without special assistance.

Training a robot using either of the above shaping methods requires a
learning architecture that is capable of learning incrementally. The controller
must not forget skills it has already learned, even if they are not directly
relevant to the current stage of the training process, and it must be able to
combine previously learned skills together to form new, more complex skills.

We have explored three different frameworks for incremental learning:

Single-Agent (SA) In the simplest case, no special additions are needed to
the basic evolutionary learning mechanism. The controller for the robot
consists of a singleTag graph, and a single population of evolving individ-
uals is maintained as the robot moves through the shaping regime. The
hope is that as the shaping environment changes, the evolving controller
population will adapt to those changes as they occur. This technique is
only suitable for shaping regimes where the task faced by the robot does
not change qualitatively from one stage to the next.

Multiple-Agent, Fixed-Interaction (MAFI) The alternative to a single
agent controller is a multi-agent controller. In this case, the final con-
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troller consists of an interacting collection of Tag graphs, each of which
is referred to as an ‘agent’. During the initial evolutionary phase, the
controller consists of a single agent. At the end of that stage, the fittest
agent in the evolving population is ‘frozen’ and incorporated permanently
into the controller. A new population is then created for the second stage
and a new agent is evolved that works with the first. The process can
be continued indefinitely, with each evolutionary stage adding one more
agent to the controller. In the MAFI framework, each agent has a sep-
arate independent role within the controller and either they act without
conflict with one another, or there exists an externally supplied arbitra-
tion system that decides which agent controls the robot in the case of
conflict.

Multiple-Agent, Learned-Interaction (MALI) Finally, we can consider
a framework identical to MAFI, except that the arbitration between
agents is be learned rather than designed by a human expert. There
are several possible ways of doing this, but we use a system we call ‘hi-
erarchical evolutionary gating’ (HEG). Agents are evolved as before, one
per evolutionary stage. This time though, each agent is given an addi-
tional output (in addition to the usual actuator outputs) producing a
value called the ‘validity’. The validity is used to determine whether an
agent ‘believes’ itself to be confident of proposing a correct action at the
current time. If the validity is greater than or equal to zero the agent
is eligible to control the robot. If it is less than zero, the agent is ineli-
gible. For each actuator over which there is conflict between agents, we
only consider those agents with positive validities. If there is still con-
flict, then the most recently evolved agent wins control. If no agents are
eligible, the actuator assumes a default value for the current cycle. The
validity mechanism allows an agent to take control if it needs to override
previously evolved agents, and to relinquish control to previously evolved
agents if that is not necessary. Note that since different agents can have
different sets of outputs, an agent which is overridden with respect to
actuator A, may get to control actuator B.

In general a shaping regime can use different learning frameworks for
different stages of the shaping regime.
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4 Experiments and Results

4.1 Experimental Setup

Sensors and Actuators

A successful controller has to learn how to link sensing to action in a way
that performs the desired behaviour. On the sensing side, our controllers are
provided with access to the image data from the camera at a simulated 4Hz
frame rate. The camera image contains 320×240 = 76800 pixels. Before being
presented to the controller, pixel intensities are converted into real numbers
ranging from 0.0 (black) to 1.0 (white).

On the action side of the controller sits the PTU, which in our setup is
‘speed-controlled’, with independent control of pan and tilt axes. The con-
troller outputs two real numbers between 0.0 and 1.0, one for the pan axis,
one for the tilt axis. 0.0 is interpreted at maximum speed left/down, 1.0 is
interpreted as maximum speed right/up and 0.5 is interpreted as stationary.

Functions and Terminals

A crucial task specific aspect of using Tag is the choice of function and ter-
minal nodes that graphs may be made out of. The function nodes used in
Tag are largely similar to the ones used in standard GP, consisting of the
standard arithmetic functions: +, −, ×, ÷, >, neg, sgn and abs; plus the
ephemeral random constant �. Division (÷) returns 1.0 if its second argu-
ment is zero. Greater-than (>) returns 1.0 if its first argument is greater than
its second argument, or 0.0 otherwise. sgn returns 1.0 if its single argument
is greater than zero, or -1.0 otherwise. Random constants are initialized to
values between -1.0 and 1.0.

In addition to these familiar functions two additional terminal nodes and
three additional functions are introduced for the tracking tasks. vis provides
access to the camera sensor. It contains five internal parameters that define
a rectangular ‘receptive field’ in the image. Four parameters define this rect-
angle, and the fifth defines a sampling resolution within that receptive field.
vis is unusual in that it returns a 2-D array of values. The arithmetic func-
tions described above are designed to cope with arrays in a sensible fashion.
If one input is scalar and the other is an array, then the output is another
array of the same size as the input array, in which each value is the result of
applying the function to the scalar value and the corresponding value in the
input array. If both inputs to a function are arrays then the arrays are first
aligned so that as near as possible their centres are co-registered. Then the
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largest common sub-array is found and an array of that size is returned in
which each value is computed from the corresponding values in the two input
arrays. The vis terminal is only used for the light-tracking task. For the
motion tracking task, a slightly different terminal vis2 is used, which returns
an array of values representing the absolute difference in intensity values in a
specified receptive field between the current frame and the previous one.

In conjunction with this terminal node, three simple image processing
function nodes are defined: avg, which returns the mean value of an array;
mx, which returns the first x-moment of the array, and my, which returns
the first y-moment of the array. These functions simply return their input if
passed scalar values.

Fitness Evaluation

The basic fitness function for the tracking tasks is defined in terms of the
tracking error E, i.e. the absolute angular offset between the straight-ahead
direction of the camera and the centre of the target. Given this, the fitness
is:

F = −
n∑

t

(1 − γt)Et (1)

where Et is the tracking error at time-step t, γ is a weighting constant,
set to 0.5 in these experiments, and the trial is continued for n time-steps —
in these experiments n = 10. Note that the sum is negated to ensure that
higher fitness values are better.

Simulation Details

In order to accurately assess the fitness of controllers it is necessary to test
them in a number of different simulator situations, known as fitness cases.
Each fitness cases consists of a particular combination of target size, target
speed, target starting location and background texture. These are generated
pseudo-randomly, and each controller is tested on between 10 and 50 different
fitness cases, the exact number being decided dynamically using the RAT
mechanism mentioned briefly above.

For the light-tracking task, pixels in the simulated background vary in
intensity value between 0 and 150. The diamond shaped simulated target
varies in radius between 4◦ and 10◦, and in intensity between 230 and 240.
The target moves in the simulated scene with a velocity between 0 and 10◦s−1,
and the simulator runs on a 4Hz cycle.
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For the motion-tracking task the target is coloured in the same random
way as the background. Both background and target pixels take values be-
tween 0 and 240, and the target moves with a velocity between 5 and 20◦s−1.
Other details are the same as for light-tracking.

4.2 Progressive Problem Difficulty Experiments

The first set of experiments looked at whether the shaping technique of pro-
gressive problem difficulty could be successfully applied to learning a 1-D
version of the light-tracking task, in which only the pan motor of the robot
head need be controlled.

A series of two stage shaping regimes was explored. In each case the
tracking problem was in some way simplified in the first stage in order to
assist the learning mechanism, and then that simplification was removed in
the second stage. Both the SA and MALI frameworks for incremental learning
were tested. For each framework, a control experiment with no shaping was
also performed. In all, ten experiments were carried out:

(a) Control (MALI).

(b) Control (SA)

(c) Restricted target start position: for the 1st stage only, targets are re-
stricted to appearing in the left half of the image (MALI).

(d) Restricted target start position (SA).

(e) Stationary targets: for the 1st stage only targets are stationary (MALI).

(f) Stationary targets (SA).

(g) Large targets: for the 1st stage only, targets are always 10◦ in radius
(MALI).

(h) Large targets (SA).

(i) Increased contrast: for the 1st stage only, the background intensity values
are reduced to half normal values (MALI).

(j) Increased contrast (SA).
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Results

For each experiment, 50 independent runs with different random number seeds
were carried out. Figure 4 shows the performance graphs from all 10 experi-
ments. The solid line in each graph shows the median (over 50 runs) minimum
tracking error in the population vs. number of tournaments. The dotted lines
show the 10th and 90th percentile minimum errors over the 50 runs.

The first thing to note about the final results is that they are all rather
similar. Experiment (c) has a median minimum error that is marginally sig-
nificantly better that the control (p = 0.05 using a two-tailed randomization-
based statistical test24), and experiment (d) has a median minimum error
that is significantly worse than the control (p < 0.01), but all the other exper-
iments did not produce median results that differed significantly from their
corresponding control.

The experiments do however differ in how the population approaches the
final result. Many of the graphs in Figure 4 have a discontinuity at the halfway
point which marks the point where the first stage ends and the second stage
begins. The sudden increase in minimum error at this point in many of the
graphs, followed by a gradual decrease in error again, is due to the shaping
conditions being changed at this point which forces the population to undergo
a period of re-adaptation to the new conditions.

As expected, the error at the end of the first (simplified) stage in most
of the shaping runs is lower than the error at the corresponding time in the
control runs, and in many of the runs is lower than the final error achieved.
Experiments (i) and (j) show this quite clearly — the increased target con-
trast in these experiments makes the tracking problem easier to solve, and
so the evolved controllers have a lower error than usual. Unfortunately this
does not translate into finding solutions with significantly lower errors than
usual on the unsimplified task. It seems that making the problem easier has
not allowed Tag to find better solutions than in the control experiments. In-
stead, Tag finds rather similar solutions that happen to perform better on
the unsimplified task.

The experiments using restricted target start positions (RTSP) are in
many ways the most interesting results here. Using the MALI framework, we
obtain results that are significantly better than the control. Using the same
shaping regime, but in conjunction with the SA method, we obtain results
that are significantly worse than the control. This discrepancy appears to be
evidence of agent specialization at work. During the first stage under either
framework, the single agent learns to deal exclusively with targets appearing
on the left side of the image. Judging by the graphs this is easier than learn-
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Figure 4. Progressive problem difficulty and the 1-D light-tracking task.
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ing to deal with the whole image. During the second stage, under the MALI
framework the second agent learns to effectively track targets appearing on
the right side of the image and simultaneously learns to set the validity ap-
propriately so that each agent is active at the correct time. This is possible
because the RTSP shaping regime matches a division of labour that is rela-
tively easy for Tag to discover. In contrast, under the SA framework, the
population has already specialized to only deal with targets on the left side
by the end of the first stage. This specialization makes it difficult for the
population to then learn how to deal with targets appearing on the right side
of the image.

The relative failure of the other shaping regimes seems to come down to
the shaping regime not corresponding to a division of labour which is easy to
discover by Tag.

4.3 Controller Decomposition Experiments

The second set of experiments explored the idea of using controller decompo-
sition to simplify learning the same 1-D light-tracking task. The idea here is
that rather than trying to learn the tracking task in one go, it would be easier
to learn how to locate the light accurately first of all, and only then to learn
how to track it.

For the light-location stages, a different fitness evaluation metric is
needed. Tag graphs evolved during these stages have a single output whose
value is written to a memory cell. The value in this cell is compared with the
horizontal coordinate of the known location of the centre of the target in the
simulated scene and the assigned fitness is then simply the negation of this
location error. Note that the action of writing to the memory cell is treated
as the same as writing to an actuator for the purposes of conflict resolution.

In addition to the controller decomposition, progressive problem difficulty
using the restricted target start position regime was employed to assist learn-
ing the light-location stages.

A five stage shaping regime was used:

1. 1-D light-location task with targets appearing only in the leftmost 25%
of the image.

2. 1-D light-location task with targets appearing only in the leftmost 50%
of the image. The first agent is frozen and a second evolving agent added
under the MALI framework.

3. 1-D light-location task with targets appearing only in the leftmost 75% of
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the image. The second agent is frozen and a third evolving agent added
under the MALI framework.

4. 1-D light-location task with targets appearing anywhere in the image.
The third agent is frozen and a fourth evolving agent added under the
MALI framework.

5. 1-D Light-tracking task with targets appearing anywhere in the image.
The fourth agent is frozen and a fifth agent is added under the MAFI
framework. The new agent has access to a new terminal node mem0 which
reads the memory cell written to by the first four agents.

Each stage is 25000 tournaments long. A control experiment was carried
out in which a single agent controller was trained on the unsimplified 1-D
light-tracking task over 125000 tournaments, with no shaping.

The different controller architectures that result from the two experiments
are shown in Figure 5.

A1

A1

A2

A3

A4

A5
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(a) (b)

Figure 5. Controller architectures used in shaping experiments. (a) Single-agent control
experiment. (b) Five-agent controller produced using progressive problem difficulty and
controller decomposition.

Results

Figure 6 shows the performance graphs from these experiments. The solid line
plots the median location/tracking error of the best individuals from each of
the 50 runs of each experiment, plotted against number of tournaments. Note
that the location/tracking error is simply the negative of the fitness metric
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being used. Also shown are the 10th and 90th percentile lowest errors from
the 50 runs. A two-tailed randomization test showed that the controllers
produced by the shaped experiment have a significantly lower median error
than those produced by the control (p < 0.01).
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Figure 6. Performance graphs for the controller decomposition experiments. (a) Perfor-
mance graph for stages 1–4 of the experiment. (b) Performance graph for stage 5 of exper-
iment. (c) Performance graph for the control experiment.

4.4 Back to Reality

It is one things to show that shaping can help us produce better robot con-
trollers in simulation, but another thing altogether to show that this leads to
better controllers in reality. To test the ability of the evolved controllers to
work on the real robot, further shaping runs were carried out to attempt to
evolve controllers for the full 2-D light and motion tracking tasks that could
compete with hand-designed controllers. Space precludes a detailed descrip-
tion of the experimental procedure here, but a full description can be found
in Perkins.15 In brief though, a ten stage shaping regime, similar to the one
described in Section 4.3, was used to produce controllers that performed well
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on the 2-D light and motion tracking tasks in simulation. These controllers
were then transferred directly to the real robot head upon which the simula-
tor was based, and tested. Handmade controllers for each of these tasks were
also produced, and these were tested in the same way. The hand-designed
controllers made use of the same sensor data as was available to the evolved
controllers, and only made use of functionality that could be performed by
a Tag graph. The light-tracker worked by thresholding the image to find
the light target, determining the centroid of the target, and then moving the
robot head accordingly. The motion-tracker worked in a similar way except
that the target was found by only moving the robot head on alternate frames,
and performing frame-differencing to locate motion.

The light-tracking controllers were tested by darkening the room, and
then holding a desk lamp in front of the robot at a distance of about 1.5m
from the camera. The lamp was held stationary in 100 different positions,
and the controller was allowed to attempt to point the camera at the light.
Performance was measured by using simple image processing to locate the
centre of the light in the image, and determining the offset from the optical
axis of the camera.

The motion-tracking controllers were tested using a toy racing car set.
A simple track layout was created, and a single car made to drive round the
circuit at constant speed. With the controller attempting to track the car,
a sequence of 25 images was captured. The location of the car was then
determined by eye in each image, and again the offset of this position from
the optical axis was used to gauge the performance of the tracker.

In addition to these objective measurements, a subjective assessment of
each of the trackers was also carried out.

Results

Table 1 shows the results from the real-world evaluations.

Table 1. Comparison of real-world performances of evolved and hand-made light and motion
tracking controllers. Mean tracking errors are in degrees.

Controller Mean Error

Evolved light-tracker 5.09± 1.49
Hand-made light-tracker 1.41± 0.15
Evolved motion-tracker 11.8± 1.1

Hand-made motion-tracker 11.0± 0.9
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As can be seen, the hand-made controllers do better than the evolved
controllers at both light-tracking and motion-tracking, although in the case
of the motion-tracker the difference is not significant. Subjectively however,
the evolved light-tracker seems to perform as well as the hand-made one. In
fact, the score for the hand-made controller is a bit misleading here since
the algorithm used to locate the light for the purposes of evaluation is the
same as the one the program uses to track the light! Conversely, the evolved
motion-tracker seems to do as well as the hand-made program on the objec-
tive assessment, but in fact the resulting controller is substantially less robust
than the hand-made one. In particular, as soon as the real-world testing
environment begins to diverge from the simulated environment, e.g. with big-
ger targets, the evolved motion-tracker goes badly wrong. The hand-made
motion-tracker on the other hand was designed to cope with any size target
and so has no problems here.

5 Related Work

As discussed at the start of paper, several other researchers use the term
‘shaping’, principally Dorigo.2,4 There are many similarities between our work
and his — a multi-agent architecture, some sort of staged learning and an
evolutionary learning system — and our work can be seen as an extension to
reduce further the required human design input.

Ulrich Nehmzow25 uses the word ‘shaping’ somewhat differently to refer
to external reinforcement provided by a human rather than by some automatic
reinforcement program.

Several other researchers have looked at using multiple GP trees in con-
cert to improve performance on complicated tasks,26,27 but not in a shaping
context as far as we know.

There has also been some work on getting GP to learn visual
processing,28,29 but we are not aware of any work using it for visual tracking
tasks.

Jakobi30 has evolved a neural network controller to perform 1-D motion
tracking on a real robot. He also uses a noisy simulator to get effective simu-
lation to reality transfer, but performs substantially more pre-processing than
I do. In Jakobi’s tracking task, only a narrow horizontal strip of the image is
examined, and this strip is further quantized to reduce it to a one dimensional
32 pixel image. These pixels are not provided directly to the controller, but
are first ‘frame-differenced’ to highlight image motion. This differenced image
is then thresholded to produce a binary 32-bit input vector with 1’s in the
vector showing the location of rapid image motion.
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6 Conclusions and Future Work

The shaping experiments presented here show that if used carefully, shaping
can significantly improve the final quality of controllers evolved for complex
tasks. In fact in experiments on motion tracking that are not reported here,
it was not possible to evolve a controller that worked at all without the use
of shaping. However the experiments on progressive problem difficulty do
indicate that if arbitration mechanisms are going to be left to the learning
system, then it is important to match the shaping regime to specializations
that the learning algorithm will find easy to develop.

We have also provided a further demonstration of the process of transfer-
ring a controller that has been evolved in simulation onto a real robot, using
a complex visual task. At the same time, the experience with the evolved
motion-tracker highlights the fact that an evolved controller will at best only
cope with situations on which it has been trained in simulation. It would have
been possible in this case to increase the ‘envelope’ of fitness cases presented
to the evolving controllers, but this would probably have entailed testing each
individual on many more fitness cases to ensure that good estimates of true
fitness were obtained. Whether this is feasible for really complicated and
poorly constrained tasks remains to be seen.
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